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The intermediate coupling treatment of the unified nuclear model, discussed 
by A. Bohr and B. Mottelson, is extended to a study of the nuclear level structure 
for a single / = 5/2 particle coupled to the nuclear surface oscillations of the qua
drupole type. Magnetic moments and quadrupole moments for the nuclear ground 
states for / = 5/2 and / = 7/2 configurations are also considered. Wave functions 
are used, including all unperturbed states with up to three phonons, and the 
energies and moments are calculated as a function of the coupling strength. We 
should need the inclusion of states with still more phonons to make detailed contact 
with the strong coupling region. However, even for the intermediate coupling 
strength for which the present results are valid, various features of the strongly 
coupled system are beginning to develop.

I. Introduction.

In the unified description of nuclear dynamics1,2, the nu
cleus is considered as a shell structure capable of performing 
collective oscillations. The state of the system is thus described 
in terms of individual-particle and collective degress of freedom. 
The former represent the most loosely bound particles, while the 
latter represent the bulk of the nucleons which cannot be individ
ually excited at moderate nuclear excitation energies. The most 
important of the collective types of the motion are oscillations in 
the nuclear shape which resemble surface oscillations.

The collective motion involves variations in the nuclear field 
and is, therefore, coupled to the motion of the individual nucleons. 
The properties of the system depend essentially on the strength 
of this coupling, which again depends on the particle configuration 
and on the nuclear deformability.

The coupled system possesses simple solutions in the limit 
of weak and strong coupling. In the former case, the particle and 
the collective types of motion are approximately independent and 
the effect of the coupling can be treated as a small perturbation.

1 A. Bohr, Dan. Mat. Fys. Medd. 26, no. 14, 1952; in the text quoted as A.
2 A. Bohr and B. Mottelson, Dan. Mat. Fys. Medd. 27, no. 16, 1953; in the 

text quoted as B.-M.
1‘ 
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In the latter case, the system bears analogies to molecular struc
tures; the nucleus acquires a large deformation and the stationary 
states can be characterized by the motion of the particles with 
respect to the deformed nucleus and the vibration and rotation 
of the structure as a whole.

A weak coupling situation is expected in the vicinity of major 
closed shells, where the high stability of the spherical nuclear 
shape makes the coupling relatively ineffective. With the addition 
of particles, the coupling increases and, in regions far removed 
from closed shells, the strong coupling situation appears to be 
rather accurately realized, as evidenced in particular by the 
nuclear rotational spectra (cf., e.g., B.-M. § Vic).

In many nuclei, however, neither the weak nor the strong 
coupling solutions are adequate, and it is necessary to develop 
methods to analyze the properties of the system also in the inter
mediate coupling region. Some calculations to this effect have 
been performed (B.-M. § Ilb.iii), using the representation of un
coupled motion similar to that used by Foldy and Milford1, 
and diagonalizing the Hamiltonian, including states containing up 
to a certain number of quanta of the surface oscillations. The 
method is somewhat similar to the Tamm-Dancoff2’3 method of 
field theory. In the present paper, we apply this method to further 
studies of nuclear properties in the intermediate coupling region.

1 L. L. Foldy and F. J. Milford, Phys. Rev. NO. 751, 1950.
2 I. Tamm, J. Phys. U.S.S.R. 9, 449. 1945.
3 S. M. Dancoff, Phys. Rev. 78, 382, 1950.

Calculations of this type become rather complex when the 
number of unperturbed states included in the wave function be
comes too great, and we therefore restrict ourselves to the simplest 
type of system, that of a single particle with a constant angular 
momentum j coupled to the nuclear surface oscillations of 
lowest order (the quadrupole oscillations). In the description of 
nuclear states, it will often be necessary to consider many
particle configurations and also to take into account that the 
interaction with the surface oscillations may couple together par
ticle states with different values of j. It is expected, however, that 
the simplified system considered will contain many of the charac
teristic features of the intermediate coupling situation and illu
strate the gradual transition from weak to strong coupling.
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In Section II, we give the equation of motion and derive the 
general formula for the evaluation of matrix elements for the 
particle-surface interaction. In Sections III, IV, and V, we consider 
level structure, magnetic moments and quadrupole moments, 
respectively, for a number of configurations.
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in terms of the mass parameter B2 and nuclear deformability C2 
(defined in A. and B.-M.). The frequency of the surface oscilla
tions is given by

where the surface energy Hs is equivalent to that of a system of 
harmonic oscillators and is given by

that only the degree 
of its state is taken

II. Equation of Motion; Method of Treatment.
We consider the dynamical system consisting of a single 

particle with angular momentum j coupled to the quadrupole 
oscillations of the nuclear surface. The total Hamiltonian of the 
system has the form (we follow the notation of A. and B.-M.)

The particle Hamiltonian Hp is a constant, since the particle 
is assumed to remain in the same orbits so 
of freedom associated with the orientation 
into account.

The interaction energy Hint represents 
particle to the 
takes the form

the coupling 
nuclear deformation and to first order

where 0, cp are the polar angles of the particle and k is the coupling 
constant.

of the
111 (X 2
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The effect of the particle-surface interaction may he con
veniently characterized by the dimensionless coupling parameter 
given by

i 5 1 Å- /cX
' J/4J l/TicoC

For x| ./«l, the coupling is relatively ineffective and can be 
treated by perturbation method; fora?»l the strong coupling 
treatment again provides a simple solution of the coupled motion.

In the present intermediate coupling treatment, we shall use 
the representation of uncoupled motion and thus write the wave 
function .

|y > NR'> IMXj-, NR; TV| >............ , (6)
NR

where the state of the surface is characterized by the number of 
phonons N, each having an anugular momentum of two units, 
and by R, the total angular momentum of the surface. 1 and M 
denote the total angular momentum of the nucleus and its Z 
component, respectively.

In order to evaluate the matrix elements of H[n{, it is con
venient to write the surface variable a2fi in terms of creation 
and destruction operators bfl and bfl, respectively. The express
ion (4) for Hin{ then becomes

A*
Using the decomposition

|j: NR; /.lí > = £ |/m > | NR/»'■>(. jRm/i' \jRIM) ■■■■■■. (8)
mju’

where the first two terms represent the particle state vector and 
the surface state vector, respectively, and where (jRin¡i' \ jRlM) 
is the Clebsch-Gordan coefficient1 for the composition of angular 
momenta; we obtain for N' > N

_<j; NR; 1M\Hm\j;N'R’;I.M>
-*l/y£  (9)

~ mm' fj.fi'fj,"

X (jRmp \jRIM) • (JR'in'/j," \jR'IM)............

1 E. U. Condon and G. H. Shortley. The Theory of Atomic Spectra, Cam
bridge University Press, 1935.
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Pho general matrix elements of <V2/t> have the form

< Isjm I y2//1 l'sj'm' > = < Isj II y2 II I'sj' > • (j'2 m'm — m' |/ 2jm)* , (10)

1 L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod. Phys. 24,249,1952.

where / is the orbital angular momentum and s the spin of the 
particle.

The function < Isj|| Y2 || I'sj') is evaluated and is given by

<^||y2|pv>
= (-1)'+ 1/'(2/'+ 1) (2/+ l)W(/'O7|*/,2).(r200|r2/0)---,' (n)

where | */ 2 2) is a Racah coefficient, the values of which
have been tabulated1. It can be shown that < Zs/|| y2 || Z's/'> 
depends only on j and j' and not on I and I', provided the com
bining states have the same parity.

Similarly, we can write out the matrix elements of < bfl ) 
in the form

< NRMB I />„ I N'R'M'n > = < NR || b || N'R' > • (ß 2.VJ(/1 | R 2 R'MB+ p)............(12)

In evaluating the function < NR || b || N'R' ), it is convenient to 
write the phonon states in terms of Boson creation operators 
acting on the ground state of the nuclear surface. As an illustra
tion, the two-phonon state with angular momentum /? can be 
written as

I 2 Rm > = ^ (22 jt/i' I 22 Rm) • Z>*  b* fl, | 0 >.......................... , (13)

where A is the normalization factor of the state vector and is 
obtained by computing the absolute value of (22/j/í'| 22 Rm) 

x ¿^Z^, | 0 ). 1 values of < NR || b || N'R' > have been evaluated 
for all stales involving up to three phonons and are given in 
Table I.

By means of (10) and (12), one obtains from (9) an expression 
for the matrix elements of Z/int which involves products of four

* Note that our notation ( Isj || Ya || I'sj' > is not the same as RAGAH’s. The 
relation is |/2/ + 1 • < Isj || Y, || I'sj' >our - (Isj || Y21| /'s/')Hacalls (Cf. Phys. Rev. «2, 
438, 1942).
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Table I.
The values of < NR || b || N'R' > factors.

<<X>||»||12> =1 <22||*||33)  = 1 /«
7

<12||*||20)  = |/2 <22 ||*||  34) = [,Æ
7

12||»||22> = |/2 <24 ||*||  32) = |,/36
35

< 12 K ft II 24 > = j/2 <24 ||*||  33) =- l/i
<20||*||32)  = |/Z <24 ||*||  34) = /J7°

< 22 K ft II 30 > = |/3 <24 ||*||  36) = 1/3
<22||*||32)  = 1//

Clebsch-Gordan coefficients. Summing over the magnetic quantum 
numbers we finally obtain

■ |/(2j + 1) (2 R'+ 1) 1V(R' Rjj I 2 I)

x<Asy K is/>-<iVR /> hV'/i’>
(14)

We now obtain an approximate solution of the equation of 
motion by including in the wave function (6) only states involving 
up to a certain number of phonons and by diagonalizing this 
restricted system. Assuming first a value for the eigenvalue, 
one may solve the linear equations in the amplitudes ; NR ; IM| > 
and, in turn, obtain an improved energy value. Such an iteration 
method was found to converge rapidly.
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III. Level Structure.

We have studied the level structure for a particle with j = 5/2 
coupled to the nuclear surface. The case j — 5/2 was chosen 
because, with increasing j, the number of phonons occurring for 
a given coupling strength increases. On the other hand, for j — 1 /2, 
the coupling vanishes and, in case of j = 3/2, there is no 
regular strong coupling solution with which to compare.

We have calculated the energies as a function of the cou
pling parameter x of the two lowest I = 5/2 states of which the 
lower represents the ground state of the system; besides these,

3

Fig. I. Level structure of a single / = 5/2 particle coupled to the nuclear surface 
oscillations. Energies of the two lowest states of I — 5/2 in units of ft co have been 
plotted as a function of the coupling parameter x = 1/—- I/ — - . The

I y ii'ytKoC 
lower curve represents the ground state of the system. The other four curves represent 
the energies of the lowest states for types I = 1/2, 3/2, 7/2, and 9/2. Wave
functions including all unperturbed states with up to three phonons have been used 
in the calculations. The results obtained are believed to be reliable for x ( 1 • 5.
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the energies of the lowest states of types I = 1/2, 3/2, 7/2, and 
9/2 have also been evaluated. In the calculations we have included 
all the unperturbed states including up to three phonons. The 
results obtained are shown in Fig. I.

The region of validity of the present calculations can be seen 
from the magnitude of the amplitudes of the three phonon states 
and it is found that significant effects of states with a higher 
number of phonons are to be expected for x larger than 1.5. 
It may be added that a comparison with the results obtained by 
only including states up to two phonons shows that the latter 
approximation is only valid for x < 1.

In Fig. II, a comparison is made with the strong coupling 
spectrum which is valid for .r»l. In strong coupling, the 
ground state has the quantum numbers 1 = K — Q = j = 5/2, 
and the lowest excited states are given by the rotation spectrum 
(cf. B. M., p. 96)

=  (15)

where I = /0, /0 + 1, 2,
The vibrational excitation of the strongly coupled system 

requires an energy approximately equal to the phonon energy 
/ico. At about this energy, another set of rotational states begins 
which, for j = 5/2, contains all possible values of I. Finally, 
particle excitations involving a change of the quantum number 
Ï2 require an energy of the order of x2h(o.

The comparison in Fig. II shows that, already for the values 
of x reached by the present intermediate coupling calculations, 
some of the features of the strong coupling spectrum are begin
ning to develop. In particular the I = 7/2 and I = 9/2 states, 
which for x » 1 become the first two rotational states, are 
relatively strongly depressed.

It must be stressed, however, that there is a significant gap 
between the regions of validity of the two methods of treatment, 
and the interpolations, shown in the figure by dotted curves, 
cannot therefore claim quantitative validity. In order to carry 
the present calculations to such large values of x that a detailed 
contact with the strong coupling spectrum can be made, it would 
be necessary to include in the wave function many more phonons, 
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which would make calculations with the present techniques 
rat her im practicable.

The present results can be compared with those obtained 
by Ford1 who has calculated the level structure for a single 
particle (/’ = 5/2) configuration in the coupled system by using 
the strong coupling approximation. The nuclear parameters as-

Fig. II. A comparison is made between the energy levels obtained from the inter
mediate coupling and strong coupling treatments. The curves plotted on the left
hand side are those in Fig. I which have been plotted with respect to the ground 
state energy. On the right-hand side are those obtained from strong coupling 
solution where the low lying states may be characterized as rotational and vibra
tional states. As indicated in the figure, there is a significant gap between the 
regions of validity of the two methods of treatment, and the interpolations shown 

by dotted curves cannot claim quantitative validity.

sumed bv Ford lead for A = 100 and A = 200 to the .r-values
0.65 and 0.90,

accurate. The

respectively, and the results of the intermediate 
s shown in Fig. II should therefore be rather 

level structure obtained shows, however, some
essential deviations from that given by Ford. The energy values 
listed by Ford are too small by more than a factor of two. Apart 
from the three lowest states, the strong coupling approximation 
also leads to a different level order from that obtained by the 
proper intermediate coupling calculations. The conclusion that 
a single particle configuration does not lead to a strong coupling 
situation was also drawn by Ford from other arguments.

1 K.W. Ford, Phys. Rev. 90, 29, 1953.
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IV. Magnetic Moments.
For the coupled system consisting of a single particle and the 

nuclear surface oscillations, the magnetic moment is given by

= <9jjz+!h<^z>M = i

= 9sp ~ CSj ~ 9r) ( ^z = I >
(16)

where g¡ and <//< are the (/-factors of the particle and the surface, 
respectively, and where /zsp = g¡j is the single-particle magnetic 
moment. For the wave function (6) one obtains for j — I

< «Z >M - / I <J; NR-, IM I > Is YO + n............ <17>
NR

while in strong coupling approaches the value

< ^z = I — I  (18)
for j = I >5/2.

The expression (17) has been evaluated for the nuclear ground 
states for j — I = 5/2 and j = / = 7/2, using wave functions 
including all slates with up to three phonons. Since, for a given 
value of x the number of phonons present in the coupled system

Fig. III. The figure illustrates the transfer of angular momentum from the particle 
to the surface oscillators as a function of the coupling strength. The curves for 
/ = 7 = 5/2 and j = 1 — 7/2 have been obtained by using wave functions in
cluding all unperturbed states with up to three phonons. For comparison, the curves 
obtained by B.-M. for j = J = 3/2 and / = I )) 1 have also been given (cf. their 

Fig. 10).
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increases with j, the three phonon approximation begins to break 
down for lower values of x in the case of J = / = 7/2 than for 
j = I = 5/2. In the former case, the results are considered to be 

' reliable only for x < 1.
The results of the calculations are shown in Fig. Ill which 

gives (Z+ 1)/I • ( liz = i as a function of x. The curves in 
the figure approach the value unity for x»l. In Fig. Ill are 
also plotted, for comparison, the curve for j = I = 3/2, which is 
obtained with four phonons and the curve for j = I » 1, which 
is obtained from a semi-classical treatment of the coupled equa
tions. The curves have been given by B.-M. (Fig. 5). For j = I 
— 3/2 there is no regular strong coupling solution and the curve 
is expected for large x to approach a value somewhat in excess 
of unity (cf. B.-M., Ap. Ill.ii). The various curves in Fig. Ill 
appear to follow a fairly regular pattern.

V. Quadrupole Moments.
For the coupled system the total nuclear quadrupole moment 

is given by
Q=Q„+0.,.............  (19)

where Qp is the contribution of the particle and Qs is that of 
the surface deformation. Il is expected that, in general, the latter 
term contributes the main part of the total Q.

The quadrupole moment Qs for a uniformly charged nucleus 
is given by

3ZfiJ
Qs ~ / - ’ ( «20 = 7 ’ (20)

\ 5 71

where Z is the nuclear charge and A() the mean radius of the 
nucleus. Since the particle-surface interaction energy is a linear 
expression in a2„, the matrix clement in (20) may be conveniently 
evaluated by using the Schrödinger wave equation*;  one then 
obtains

(21)
NIÏ

I am indebted to Dr. K. Alder for suggesting this method.
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Fig. IV. The figure shows the gradual development of the projection factor for 
the quadrupole moment in the coupled system as a function of the coupling 
strength. The curves for / = I = 5/2 and j = I — 7/2 have been obtained by 
using wave functions including all unperturbed states with up to three phonons. 
For comparison, the curves obtained by B.-M. for j = I — 3/2 and j = I )) 1 

have also been given (cf. their Fig. 10).

It is convenient to write the collective part of the nuclear 
quadrupole moment in the form (cf. B.-M., Chapter V)

where
Qs — Qo*pq (t)

3ZZ?“ k (2/—1)
4% *C*2(Z4-1) ’

(22)

(23)

and where Pq(x) represents a projection factor which is equal 
to unity for .r«l and approaches for .r>) 1, the value

/(2/-1)
(Z+l) (2 1+ 3) (24)

In strong coupling, where the nucleus performs small vibrations 
about a certain equilibrium deformation, the quantity ()0 repre
sents the instrinsic nuclear quadrupole moment measured with 
respect to the axis of the deformed nucleus.

The transition from weak to strong coupling may be con
veniently described in terms of the gradual development of the 
projection factor (24). For the intermediate coupling wave func
tion, one obtains from (20), (21), (22), and (23)
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P0(æ) = 1 4(7+1) 
x2'(2/+3)(2/-1)

• jy \<J;NR-,IM\>\2(N+\£\).............(25)

NK

This expression has been evaluated for the states j = I = 5/2 and 
j — I = 7/2, for the wave function including all possible states 
with up to three phonons, and the results are given in Fig. IV. 
In this figure are also shown the intermediate coupling projection 
factors obtained by B.-M. (cf. their fig. 10) for the states j — I 
= 3/2 and j = Z»l. The present results tend to confirm the 
interpolated values of Pq(x) employed by B.-M. in their analysis 
of empirical quadrupole moments (cf. Table IX of this reference).
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